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Heralded single-photon partial coherence
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We study transverse spatial coherence of approximately localized single-photon states. We demonstrate
nonlocal control over single-photon spatial coherence via projective measurements of an entangled twin and
provide a theoretical interpretation from quantum coherence theory. Our results show that the spatial coherence
of a single-photon state behaves similarly to that of a classical optical field, although the coincidence measurement
adds a degree of freedom.
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I. INTRODUCTION

Optical spatial coherence, characterizing correlations be-
tween optical fields at distinct points, plays a key role in the
understanding of classical and quantum phenomena. While
coherence in general has been studied since at least the times
of Thomas Young and Émile Verdet in the 19th century,
spatial coherence for classical optical fields was only put
on firm theoretical footing in the early 20th century by
Zernike and van Cittert [1,2], followed closely by experimental
work [3].

Technological advances in recent decades, such as powerful
lasers and fast, efficient photon counters, have enabled the
study of nonclassical (quantum) optical fields. Spontaneous
parametric down-conversion (SPDC) in a nonlinear optical
crystal allows for the creation of entangled photons as
well as approximately localized single-photon states through
heralding [4]. The spatial properties of such states have been
extensively described in terms of position-momentum entan-
glement [5,6], ghost imaging [7], and ghost diffraction [8].
Related research includes the creation of entangled images—
investigated both theoretically and experimentally [9–11]—
sub-Rayleigh diffraction interference [12], Gaussian state
imaging [13], and high-dimensional quantum key distribu-
tion [14]. Because the transverse spatial domain consists
of an infinite number of orthogonal modes, it possesses
tremendous data capacity for key distribution or other
data transmission schemes even at the single-photon level
[15,16]. Theoretical and experimental treatments typically
assume complete single-photon spatial coherence—namely,
that each individual photon perfectly interferes with itself
spatially.

Although previous work has focused on establishing a
Zernike–van Cittert–type relation for down-converted fields,
questions about what was ultimately observable and how to
characterize observations remained. We extend this work to
describe two-point partial coherence for a single photon, rather
than a down-converted biphoton. We provide a theoretical
model from quantum coherence theory and experimental
observations inspired by Thompson and Wolf [3]. In particular,
we clarify the role of quantum birth zones in SPDC sources and
observe the zero crossing of the field’s partial coherence. Birth
zones are the quantum analog of independent classical emit-
ters; they characterize the heralded single photon’s coherence
properties.

II. THEORY

We consider the following scheme (the experimental setup
is shown in Fig. 1): a laser beam pumps an SPDC crystal
and we approximate the output as an entangled two photon
state [17]:

|ψ〉 ∝
∫

dxs dxi exp

(
−xs + xi

�p

)2

× exp

(
−xs − xi

�c

)2

a†(xs)a
†(xi)|0〉, (1)

where �p is the 1/e2 beam radius (in intensity) at the SPDC
crystal, and �c is the 1/e2 transverse correlation radius, or
birth zone radius, at the crystal. A beamsplitter separates this
output state into signal and idler beams (denoted by s and i,
respectively).

We use the idler beam to herald a photon in the signal beam.
The idler beam passes through optics creating a scaled image
of the crystal face where an adjustable-width slit is placed,
followed by a bucket detector. We detect at the image plane
to eliminate the propagation effects of the idler photon. The
transverse field operator at this image plane is identical to the
operator at the crystal output face,

Ê
(−)
i (xi) ∝ a†(Mixi), (2)

where xi and is the transverse position variable of the idler
beam at this plane, and Mi is the scaling term. Closing
the adjustable idler slit in this arm controls the number of
transverse SPDC birth zones contributing to a coincident
detection.

We propagate the signal beam and are interested in the
two-point degree of coherence of this propagated signal beam.
The transverse field operator after the collimating lens is the
transverse operator at the crystal output face integrated over
the propagation kernel (the first exponential can be discarded
if the field propagates to the far field),

Ê(−)
s (xs) ∝

∫
dx1a

†(x1) exp
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k

z
x2

1

)

× exp

(
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k

z
(Msxs)x1

)
, (3)

where k is the wave number of the light, x is the transverse
position, z is the propagation distance, and Ms is a scaling
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FIG. 1. (Color online) A 325 nm collimated pump undergoes
Type-I nondegenerate collinear SPDC at a nonlinear crystal. The
crystal face is imaged onto an adjustable-width slit in the idler arm
and a computer controlled scanning 50 µm slit in the signal arm.
The diffraction pattern from the double slit mask in the signal arm is
profiled by the scanning slit. Photons are detected with single-photon
counting modules. A PicoHarp coincidence circuit correlates these
measurements and provides results to data logging software.

term for the signal beam. Subscript 1 indicates the variable is
for the plane of the crystal face.

In general, for nonheralded photons, the two point degree
of coherence for a given state and field operators is

g(1)(xa,xb)

= 〈ψ |Ê(+)(xa)Ê(−)(xb)|ψ〉√
〈ψ |Ê(+)(xa)Ê(−)(xa)|ψ〉 × 〈ψ |Ê(+)(xb)Ê(−)(xb)|ψ〉

.

(4)

The effect of heralding a signal photon with an idler photon,
as in our case, is to make the following substitution:

〈ψ |Ê(+)
s (xa)Ê(−)

s (xb)|ψ〉
→

∫
slit

〈ψ |Ê(+)
s (xa)Ê(+)

i (xi)Ê
(−)
i (xi)Ê

(−)
s (xb)|ψ〉dxi. (5)

The heralding introduces the variable xi which is integrated
out, however the limits of spatial integration can be controlled,
thus adding a degree of freedom.

We make the substitution and consider the case of symmet-
ric points (xb = −xa) and use a slit width of W . The numerator
becomes

exp
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and the denominator becomes

exp
(

−(4AC+B2)x2

4C

)
×

[
Erf

(
CW+Bx

2
√

C

)
+ Erf

(
CW−Bx

2
√

C

)]
√

4C
πF 2 [(N2 + 1)2 + F 2]

.

(7)

The single photon g(1) is then the quotient of these:
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(8)

The terms used above are defined as follows:

A = 2F 2M2
s (N2 + 1)

�2
p[(N2 + 1)2 + F 2]

, (9)

B = −4F 2MiMs(N2 − 1)

�2
p[(N2 + 1)2 + F 2]

, (10)

C = 2M2
i (N2 + 1)(F 2 + 4N2)

�2
p[(N2 + 1)2 + F 2]

, (11)

D = −4FMiMs(N4 − 1)

�2
p[(N2 + 1)2 + F 2]

, (12)

where N = �p/�c is the number of birth zones excited by
the pump, this quantity is identical to the R parameter used
by Fedorov et al. for quantifying entanglement [18], and F =
�2

pk/2z is the Fresnel number, a geometric factor related to
the propagation of the pump beam. As the field propagates
to the far field, this Fresnel number goes to zero; the formula
for the far field then is the first order expansion in F . Although
the error function arguments in Eq. (8) are complex, the sum of
the error functions themselves is purely real due to symmetric
points being used.

The nonheralded two-point degree of coherence g
(1)
nh at this

plane uses the SPDC state with the idler photon traced out over
all space, effectively extending the idler slit width to infinity.
The resulting symmetric two-point coherence is

g
(1)
nh (x, − x) = exp

(−(B2 + C2)x2

4A

)
. (13)

Figure 2 shows representative g(1)(x, − x; W ) curves as a
function of W for several values of N . The parameters for
A,B,C,D, and x correspond to those used in the experiment.
As N → 1 the degree of coherence for the heralded signal
photon is less and less affected by the opening of the idler
slit. This mirrors the classical behavior of unity degree of
coherence for a single emitter field, regardless of emitter size.
For N � 1 the photon’s partial coherence exhibits oscillatory
behavior similar to the classical behavior described by the
Zernike–van Cittert theorem which assumes infinitesimally
small emitters. One can see that when N is sufficiently
large, we expect the degree of coherence to exhibit a phase
inversion for certain slit widths, represented in Fig. 2 by the
curves dipping below zero. This would manifest itself in an
interference pattern as peaks becoming troughs and vice versa.
The corresponding nonheralded degree of coherence for these
representative curves is less than 10−70, essentially zero.

It is only near the image plane of the crystal that we can
effectively post-select birth zones. By moving the idler slit
toward the far field pattern of the crystal, either by moving the
slit, or simply removing the idler arm focusing lens (lens L2
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FIG. 2. (Color online) Representative theoretical predictions for
heralded single-photon two-point degree of coherence from Eq. (8)
for several numbers of birth zones excited by the pump as a function
of idler slit width W . The only difference between the curves is the
birth zone size. Relevant parameters for Eq. (8) are A = 0.22 mm−2,
B = 1.2 mm−2, C = 9.6 mm−2, D = −110 mm−2, and x = 743 µm.
The dotted line is the behavior of a classical incoherent source with
the intensity profile of the pump beam, apertured by the slit.

in Fig. 1) the birth zones would blend together incoherently
due to diffraction. This would result in an effective birth-zone
number less than N and g(1) in this type of setup could exhibit
less or no oscillatory behavior. It should be noted that, just as
in the classical Zernike–van Cittert theorem, accounting for
finite bandwidth (as opposed to the single optical frequency
theory provided here) results an average of weighted g(1)

curves, each with a slightly different oscillation frequency.
The predicted phase inversion and zero crossing would still be
present however.

The expected coherence properties of heralded single
photons have classical analogs, only in this case there is the
added degree of freedom coming from the entangled twin
photon used for heralding. This degree of freedom can be used
to induce single-photon coherence inside spatially incoherent
beams.

III. EXPERIMENT

The experimental apparatus is depicted in Fig. 1. Colli-
mated light from an 8 mW, 325 nm HeCd laser, referred to as
the pump, with a 1/e2 full width of approximately 1600 µm
was incident on a spectrally filtering dispersing prism. The
pump was then incident on a 0.5 mm thick BiBO nonlinear
optical crystal oriented for nondegenerate Type-I collinear
SPDC. The resulting signal and idler photon bandwidths were
centered on 633 nm and 667 nm, respectively. For these
parameters the pump excites around 100 transverse birth zones
of an approximate width 20 µm.

After the crystal, residual pump light was removed by a
325 nm stop-band notch filter. A dichroic mirror centered on
650 nm separated signal and idler photons into distinct optical
paths.

For the signal arm, lens L1 (200 mm focal length, located
215 mm from the crystal face) very nearly collimates the
down-conversion beam. Lens L4 (300 mm focal length, located
865 mm from len L1) focuses the beam after it has passed
through a double slit mask. A 50 µm slit mounted on a

computer-controlled translation stage was placed at this focus
(the image plane of the crystal). Scanning the stage in 5 µm
increments yielded the transverse interference profile of the
signal beam. Observing the fringe visibility constitutes our
measurement of the two-point degree of coherence between
the two slits in the double slit mask. Ideally this fringe visibility
is identical to the degree of coherence between the slits. These
slits were 390 µm wide and separated by 1490 µm (center to
center).

In the idler photon arm, lenses L1 (200 mm focal length
and located 215 mm from the crystal) and L2 (250 mm focal
length, located about 400 mm from lens L1) imaged the crystal
face onto an adjustable-width slit with. After this slit, lens L3
(250 mm focal length) aided in photon collection. We note that
the idler slit was scanned along the beam propagation axis such
that it was in the ghost image plane of the signal arm detector.
This ensures that we detect a sharp slit in coincidence however
it effectively transfers all optical element placing error into
the location of the idler slit. Slit misplacement would cause an
effective slit width that is smaller than the true width.

Finally, the signal and idler beams were focused by
10× microscope objectives onto multimode optical fibers
connected to single-photon counting modules (SPCMs). The
SPCMs were run in geiger mode to detect single photons and
their output signals were sent to a PicoHarp counting unit
which counted single-photon rates as well as the coincident
rate. Counts were integrated for 20 s at each position of the
scanning signal arm slit. The coincidence window was 3 ns.
Data were recorded by a PC running LabView software. The
detected patterns were thus built up from an ensemble of
single photons, but the coherence properties were nevertheless
a property of each photon individually.

IV. DATA

The theoretical and measured two-point coherence as a
function of idler slit width is shown in Fig. 3. The dashed
line shows the expected single photon g(1) from Eq. (8) with
no variable slit placement error. The solid curve shows the
expected theoretical g(1) with a effective slit scaling of 1/2,
corresponding to an error of location of about half an inch.
Measured g(1) values are shown as points. These values were
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FIG. 3. (Color online) Measured two-point degree of coherence
for the heralded photon are shown. The g(1)(W ) from Eq. (8) is shown
as a dotted line. The expected g(1)(W ) with effective idler arm scaling
is shown as a solid line.
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FIG. 4. (Color online) Detected interference patterns showing
characteristics of interest for both heralded single photons (coinci-
dences) and nonheralded photons (singles). Points are experimental
data while lines are fits to the data.

found using a nonlinear least squares optimization to fit the
detected interference pattern to the form of the expected
pattern. Error bars represent 95% confidence intervals from
the asymptotic standard errors of the optimization, and include
random error only. The measured g(1) follows the expected
behavior very well with one notable deviation: the measured

g(1) reaches a maximum that is less than unity for small idler
slit widths. This is most likely due to the scanning slit having
spatial extent and thus not being a true point detector. The
measured g

(1)
nh (W ) values were distributed around zero, all had

magnitude less than 0.05 and had error values of the same
magnitude.

Representative interference scans used to determine g(1)

and g
(1)
nh are shown in Fig. 4. The points show experimental

count data; the solid curves show theoretical expectation with
best-fits. For nonheralded measurements we see no discernible
coherence. The heralded single-photon case with controllable
coherence achieves levels near unity. The interference pattern
phase inversion for single photons is clearly visible.

V. CONCLUSION

We have measured the partial two-point transverse coher-
ence (g(1)) of heralded single-photon states. We projected
entangled photon pairs into approximately localized single-
photon states by detecting one of the photons and mea-
suring the corresponding coincident photon. To characterize
the single heralded photon, we eliminate the propagation
effects of the heralding photon by detecting it at the image
plane of the source. We were able to nonlocally control
the remaining photon’s partial transverse coherence with
a slit in front of this image plane detector. The results
show the behavior of such states to be well described by
quantum coherence theory. Our discussion clearly describes
quantum birth zones as a property of the single-photon
source and shows how this source property governs the
observed coherence. We have experimentally observed the
predicted zero crossing of the degree of coherence and negative
coherence.
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